Notes

CHIROM. 4000

Computer program for calculation of gradients for column chromatographic elution

Linear elution gradients are useful in many of the applications of column chromatography ${ }^{1}$ but more complex patterns of salt or pH alteration during elution are sometimes helpful in achieving specific separations. Reliable devices have been described for the formation of such gradients ${ }^{2}$ and it is a simple matter to calculate the gradient that will be produced by such a device when specified concentrations

Fig. I. Part one of the gradient calculation program.

[^0]of eluant are placed in the mixer, using either general formulas ${ }^{2}$ or nomograms designed for the purpose ${ }^{3}$. It is rather more tedious to calculate the concentrations of eluant that must be placed in the mixer to give a specified gradient, and a process of successive approximations from tables of calculated partial values has been suggested as satisfactory for most purposes ${ }^{2}$. This paper gives a program for the calculation of mixer concentrations which will give a good fit to a specified gradient under prescribed experimental conditions. The program can be used with the computer facilities that are now readily available to most investigators.

Method of calculation

The program is written in Fortran IV and has been used on a Control Data Corporation Model 6400 Computer System at the University of Colorado Computer Center. The commercially available gradient mixing devices are customarily ninechambered and the program is designed specifically for such an apparatus although it could readily be modified to accomodate a larger or smaller number of chambers by altering the appropriate indices in the calculation. The user specifies the desired

Fig. 2. Part two of the gradient calculation program.
shape of the gradient in terms of molar concentrations at roo equally spaced points along the gradient. The program then calculates by successive approximations the concentrations of eluant to be placed in the mixing chamber to give the desired gradient. The resulting input concentrations and the calculated mixer output are tabulated numerically, along with the percentage deviation of each calculated point from the corresponding input datum. In order to estimate quickly the adequacy of the correspondence between the calculated and the desired gradient, a standard printer plot subroutine is then instructed to display the results of the calculation ${ }^{4}$.

In the programming no attempt was made to condense maximally the computer instructions with respect either to machine space or computing time, because the extencled version will probably be more readily modified by future users to meet special conditions. The approximation method used is one of successive bisection of the error at each iteration of the calculation and was selected in order to avoid difficulties with conditional convergences ${ }^{5}$. The relatively slow convergence of such a method is no disadvantage with modern high speed computing machines. The program is arranged to stop when the agreement between the desired and calculated gradients becomes better than a specified error (which may readily be altered by the user), or to stop if the approximation process ceases to converge, or to stop after a specified number of iterations (999 as written but simply adjustable by the user). The final result of the calculation is tabulated and plotted graphically for inspection in all cases.

Fig. 3. Part three of the gradient calculation program.
J. Chromatog., 41 (1969) 250-258

Fig. 4. Program.for graphic representation of the results of the calculation.

Results and discussion

A complete listing of the program and subroutines is given in Figs. I-4. Fig. 5 shows the printed output and Fig. 6 demonstrates the graph that is obtained when the input consists of instructions to calculate a linear gradient. The results of the calculation are obviously correct. When a more complex gradient is specified the

Fig. 5. Numerical output for a linear gradient input specification.

Fig. 6. Graphic representation for alinear gradient input specification.

satisfactory result shown in Fig. 7 is obtained. Fig. 8 gives the result obtained when the program is requested to calculate a very complex pattern (one which in fact would probably not be experimentally useful) but even in this case it is apparent that the calculation is possible. The utility of the program would appear to be great to those investigators engaged in the column chromatographic separation of complex mixtures.

At first glance it would appear that a least squares method of obtaining the solution to the simple simultaneous equations involved in the problem would be most efficient and satisfactory. Further consideration shows this assumption not to be the case since there is no simple way to avoid negative (and physically impossible) values as possible solutions to the system by the least squares method. The least squares solution is readily performed by machine computation, and it does in fact give negative values for all but the simplest gradients. Other mathematical techniques such as linear programming could undoubtedly be applied to this problem to obtain with certainty a "best fit", but these procedures seem unnecessarily sophisticated in the present instance. No simple proof that the results obtained by the method of approximation used are actually a "best fit" is apparent, but experience with the program with a variety of gradients in which the progress of the approximation process was observed numerically suggests that the results obtained are as good as can be obtained within the inherent physical restraints of the problem. Certainly they are within the experimental tolerance to be expected with all ordinary laboratory facilities for the formation of the gradients.

Acknowledgements

I thank Mife Niernberg, Thomas Entzminger, and James Hanley for patiently tutoring me in the intricacies of numerical analysis by machine computation. This research is supported in part by National Institutes of Health Research Grants No. AM II846, National Institute of Arthritis and Metabolic Diseases and No. HD oo78I, National Institute of Child Health and Human Development. The Computer Services Center of the University of Colorado Medical Center, whose facilities were utilized in making some of the calculation described, is supported in part by National Institute of Health Research Grant No. FR 00404, Division of Research Facilities and Resources.

Department of Biochemistry and
Dwain D. Hagerman
Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Denver, Colo. 80220 (U.S.A.)

I L. R. Snyder, Advan. Anal. Chem. Instr., 3 (1963) 251.
2 E. A. Peterson and H. A. Sober, Anal. Chem., 3 (1959) 857.
3 A. Kocent, J. Chromatog., 6 (196I) 324.
4 IBM IT3O Scicntific Subroutine Pachage, 3rd Ed., International Business Machines Corporation, White Plains, N.Y., 1967.
5 T. R. McCalla, Introduction to Numerical Methods and Fortran Programming, John Wiley, New York, 1967.

Received February 5th, 1969
J. Chromatog., 4I (1969) 250-258

[^0]: J. Chromatog., 41 (1969) 250-258

